Overview of the field of Somnology And Impact to Population Health

Robyn Woidtke MSN, RN, RPSGT, CCSH

Objectives

- At the completion of this module, the learner will
 - Explain the history of the field of somnology
 - Identify the importance of breakthrough research in somnology
 - Consider the applicability in todays healthcare environment
 - Recognize the impact of sleep health on workplace productivity
 - Consider implement sleep promoting programs in the community

What is Somnology and Sleep Medicine?

- The branch of science devoted to the study and the physiology of sleep, the behavioral dimensions of sleep and the consequences of sleep loss and sleep disorders on an individuals and the general populations health, performance, safety and quality of life.
- Sleep Medicine is a branch of clinical medicine devoted to the diagnosis and treatment of individuals suffering from chronic sleep loss or sleep disorders

IOM Report on Sleep and Sleep Deprivation 2006

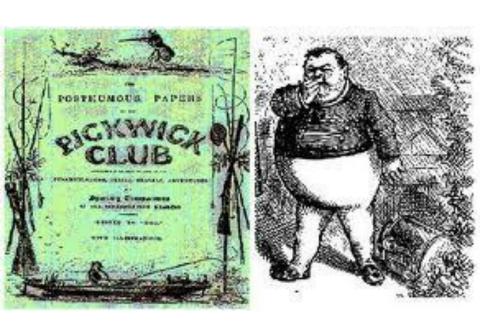
The Mystery of Sleep

Egypt

 Survey of ancient Egyptian papyrus describe using poppy seeds as a treatment of insomnia, a strong focus on dream interpretation

Solution Greece

- "sleep is produced by withdrawal of blood from the surface of the body to the larger vessels"
- Hippocrates: "sleep as is usual with us in health, the patient should be awake during the day, and sleep at night"" The worst is when no sleep either night or day for it follows from this symptom, that the insomnolency is connected with sorrow and pains or that he is about to become delirious.


- Theory of yin and yang—sleep and wake
- Number of medications used for sleep (ephedra and ginseng)

Kirsch, D. There and Back Again: A current history of sleep Medicine; CHEST 2011

Religious Writings

- Bible: Dreams were a method of prophecy
 - Mary
 - Joseph
 - Moses
- Talmud
 - "sleep is one-sixtieth death"
- Torah
 - The day and night shall consist of 24 hours, it is sufficient for a person to sleep on third thereof which consists of 8 hours

Joe the Fat Boy-Charles Dickens 1836

fallen asleep again...
he's always asleep.
Goes on errands fast
asleep and snores as
he waits at the table.

Not so Ancient

Sleep Research Timeline

The following timeline describes some of the important milestones in the history of sleep research:

Year	Event	
1875	Caton records the brain electrical activity of animals in England.	
1877	The problem of narcolepsy is first described in the medical literature.	
1880	Gelineau describes a group of patients in France with a problem he names "narcolepsy."	
1902	Loewenfeld coins the term "cataplexy" to describe the onset of muscle weakness that often affects people with narcolepsy.	
1929	Berger discovers and reports the "electroencephalogram (EEG) of man" in Germany.	
1937	Loomis documents the EEG patterns of what is now called non-rapid eye movement (NREM) sleep.	
1945	Ekbom describes restless legs syndrome in Sweden.	
1953	Kleitman and Aserinsky at the University of Chicago describe the rapid eye movement (REM) stage of sleep and propose a correlation with dreaming.	
1956	Burwell and colleagues publish a description of the obesity hypoventilation (Pickwickian) syndrome, laying the groundwork for the discovery of obstructive sleep apnea.	
1957	Dement and Kleitman describe the repeating stages of the human sleep cycle.	
1960	Vogel recognizes that REM sleep in narcoleptics begins near sleep onset rather than one to two hours later.	
1963	Wurtman and colleagues report that melatonin synthesis in the pineal gland is under the inhibitory control of light.	
1965	Oswald and Priest use the sleep laboratory to evaluate sleeping pills.	
1966	Gastaut and colleagues in France, and Jung and Kuhlo in Germany discover obstructive sleep apnea (OSA).	
1968	Rechtschaffen and Kales publish a scoring manual that allows for the universal, objective comparison of human sleep stage data.	

Sleep Research Timeline

The following timeline describes some of the important milestones in the history of sleep research:

1972	Studies pinpoint the suprachiasmatic nuclei (SCN) as the site of the biologic clock.
1973	First report of a narcoleptic dog.
1974	Holland gives the name "polysomnography" to the overnight sleep study.
1976	Carskadon established sleep latency as an objective measurement of sleepiness.
1981	Sullivan and colleagues use continuous positive airway pressure (CPAP) to treat OSA.
1986	Schenck, Mahowald and colleagues publish the first formal description of REM sleep behavior disorder (RBD).
1989	Rechtschaffen and colleagues find that total sleep deprivation results in the death of all rats within two to three weeks.
1991	Johns develops Epworth Sleepiness Scale to diagnose sleep disorders.
1999	Studies show that hypocretin mutations cause narcolepsy in mice and dogs.
2000	Mignot and colleagues at Stanford discover that human narcolepsy also is associated with hypocretin deficiency.
2001	Ptacek et al discover 1st human gene involved in circadian rhythms.
2003	Stickgold and colleagues publish evidence of sleep's affect on memory and learning process.
2007	American Academy of Sleep Medicine reclassifies stages of non-REM sleep into 3 categories.
2008	Young and colleagues find high mortality risk for untreated sleep-disordered breathing.
2010	Redline et al associate obstructive sleep apnea with increased stroke risk for men.

Sleep as a Specialty

1964.
The first sleep
disorders center was
established as a
narcolepsy clinic at
Stanford University

1975

5 sleep centers opened, predominantly on the East Coast 1975

Blue Shield of
California
recognized the
significance of Sleep
Medicine and began
reimbursing for
sleep services

1975

First formal society for sleep medicine

Association of Sleep
Disorders

Centers

1981 First Scientific Sleep Meeting

1960's Association for the Psychophysiological Study of sleep:1968 R&K

2013 AASM 2500

Professional Organizations

- American Academy of Sleep Medicine
- Sleep Research Society
- Sleep Dental Society
- American Association of Sleep Technologists (Formally, Association of Polysomnographic Technologists)
- Board Certification
 - Physicians and PhD
 - Sleep Technologists (RPSGT, RST, SDS)
 - New 2014: Certification in Clinical Sleep Health

Patient Organizations

- Marican Sleep Apnea Association
- National Sleep Foundation
- Willis-Ekbom Foundation
 Market Representation
 Market Representati
- Narcolepsy Foundation
- May on-line resources exist, but may not be always reliable

Sleep Health (Defined by Buysse)

Sleep health is a multidimensional pattern of sleepwakefulness, adapted to individual, social, and environmental demands, that promotes physical and mental well-being. Good sleep health is characterized by subjective satisfaction, appropriate timing, adequate duration, high efficiency, and sustained alertness during waking hours.

> Sleep Health: Can We Define It? Does It Matter? Sleep. 2014 Jan 1; 37(1): 9–17.

Conceptual Model of Sleep Health

Buysse D.J, 2014

Sleep Health: Can We Define It? Does It Matter? Sleep. 2014 Jan 1; 37(1): 9–17.

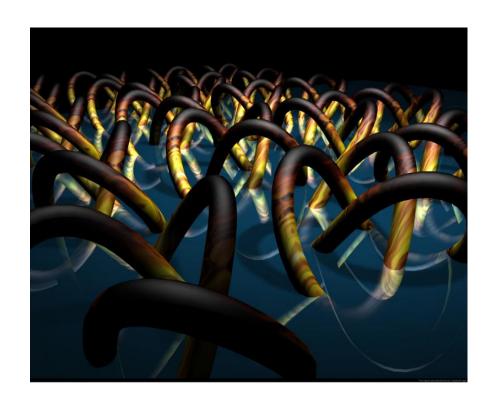
Conceptual Model of Sleep Health

Buysse D.J, 2014

Sleep Measure	Associated Health Outcomes	Sample References	
Satisfaction/Quality	Mortality	Kojima et al., 200065; Elder et al., 200866; Rod et al., 201167; Hublin et al., 201168	
	Metabolic Syndrome	Jennings et al., 2009 ⁶⁹ ; Troxel et al., 2010 ⁷⁰	
	Diabetes/impaired glucose metabolism	Vgontzas et al., 2009 ⁷¹ ; Haseli-Mashhadi et al., 2009 ⁷² ; Knutson et al., 2011 ⁷³ ; Pyykkonen et al., 2012 ⁷⁴	
	Hypertension	Vgontzas et al., 200975; Fiorentini et al., 200776; Rod et al., 201167	
	Coronary heart disease	Laugsand et al., 201177; Hoevenaar-Blom, 201178; Appelhans, 201379	
	Depression	Baglioni, 2011 ⁸⁰	
Alertness/Sleepiness/	Mortality	Hays, 1996 ⁸¹ ; Newman et al., 2000 ⁸²	
Napping	Coronary heart disease	Newman et al., 2000 ⁸² ; Sabanayagam et al., 2011 ⁸³	
	Impaired neurobehavioral performance	Dinges et al., 1997 ⁸⁴	
Timing (e.g., shift	Mortality	Åkerstedt et al., 2004 ⁸⁵	
work, chronotype)	Coronary heart disease	Kawachi et al., 1995%; Frost et al., 2009 ⁵⁷	
	Metabolic syndrome	Karlsson et al., 200186; Lin et al., 200989; Pietroisti et al., 201090	
	Diabetes/impaired glucose metabolism	Pan et al., 201191; Buxton et al., 201292; Reutrakul et al., 201393	
	Accidents	Folkark and Åkerstedt, 2004 ⁶⁴ ; Barger et al., 2005 ⁶⁵	
Efficiency (sleep	Mortality	Newman et al., 2000 ⁶² ; Nilsson et al., 2001 ⁹⁶ ; Mallon et al., 2002 ⁹⁷ ; Dew et al., 2003 ⁹	
latency, wake after sleep onset)	Metabolic syndrome	Troxel et al., 2010™	
sicop onsery	Diabetes/impaired glucose metabolism	Cappuccio et al., 2010 ⁵⁶ ; Engeda et al., 2013 ¹⁰⁵ ; Kawakami et al., 2004 ¹⁰¹ ; Knutson et al., 2011 ⁷³ ; Lou, 2012 ¹⁰²	
	Hypertension	Vgontzas et al., 200975; Javaher et al., 2008103; Phillips and Mannino, 2007104	
	Coronary heart disease	Laugsand et al., 201177; Grandner et al., 2012105	
	Depression	Baglioni et al., 201180	
Duration	Mortality	Wingard and Berkman, 1983 ¹⁰⁸ ; Kripke et al., 2002 ¹⁰⁷ ; Hublin et al., 2007 ¹⁰⁸ ; Youngstedt et al., 2004 ¹⁰⁹	
	Obesity	Gangwisch et al., 2005 ¹¹⁰ ; Cappuccio et al., 2008 ¹¹¹ ; Hasler et al., 2004 ¹¹² ; Buxton et al., 2010 ¹¹³	
	Metabolic Syndrome	Hall et al., 2008 ¹¹⁴	
	Diabetes	Ayas et al., 2003 ¹¹⁵ ; Gottlieb et al., 2005 ¹¹⁶ ; Yaggi et al., 2006 ¹¹⁷	
	Hypertension	Gottleib et al., 2006 ¹¹⁸ ; Gangwisch et al., 2006 ¹¹⁹ ; Cappuccio et al., 2007 ¹²⁰ ; Stranges et al., 2010 ¹²¹	
	Coronary heart disease	Mallon et al., 2002 ⁸⁷ ; Ayas et al., 2003 ¹²² ; Hoevenaar-Blom et al., 2011 ⁷⁸	
	Impaired neurobehavioral performance	Van Dongen et al., 2003 ¹²³ ; Van Dongen et al., 2004 ¹²⁴ ; Belenky et al., 2003 ¹²⁵	

What is Public Health?

≈ Public health is the science of protecting and improving the health of families and communities through promotion of healthy lifestyles, research for disease and injury prevention and detection and control of infectious diseases (CDC Foundation)


Why is sleep an important component of population health

- "the health outcomes of a group of individuals, including the distribution of such outcomes within the group
- the overall goal of a population health approach is to maintain and improve the health of the entire population and to reduce inequalities in health between population groups

"one guiding principle of a population health approach is "an increased focus on health outcomes (as opposed to inputs, processes, and products) and on determining the degree of change that can actually be attributed to our work"

Why learn about sleep and associated disorders?

Sleep disorders are chronic conditions necessitating complex treatments. They are frequently co-morbid with other sleep disorders and other conditions (e.g., cardiovascular disease, depression, or diabetes), which, by themselves, are complex to treat.

Sleep Disorders are Chronic Conditions

"There are numerous reasons for a paradigm shift to chronic disease management. Proper treatment for most sleep disorders—as for other chronic diseases such as congestive heart failure, diabetes, asthma, and depression— requires a period of time for fine-tuning, extended follow-up, and lifestyle changes.

IOM Report on Sleep and Sleep Deprivation 2006

Alterations in Sleep Health

Solution Quantity **Solution** Quality ∞ Timing and Consistency

Sleep Medicine Integration

- Make sleep inquiry an "ALWAYS EVENT"
- Bi-Directionality:
 - o What is it?
 - Why is it important to other medical specialties?

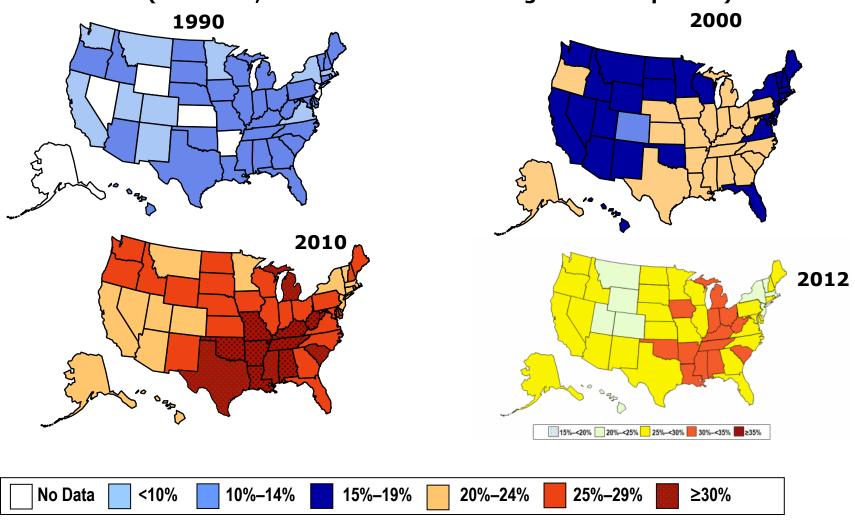
Sleep and Co-Morbidity

Bi-directional impacts

Lack of sleep impacts a host of body functions

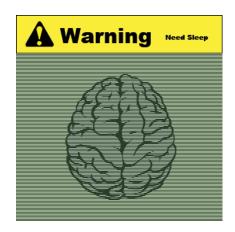
Illness impacts an individuals ability to have adequate sleep.

Co-Morbidity and Sleep


Association between number of comorbid conditions, depression, and sleep quality using the Pittsburgh Sleep Quality Index: results from a populationbased survey (Hayashino, 2010)

- The number of comorbid conditions correlated positively with poor sleep quality, and as the number of comorbid conditions increased, the proportion of those also suffering from depression increased.
- Recognizing the signs of depression in patients with multiple comorbid conditions is important because of its exacerbation of poor sleep quality.

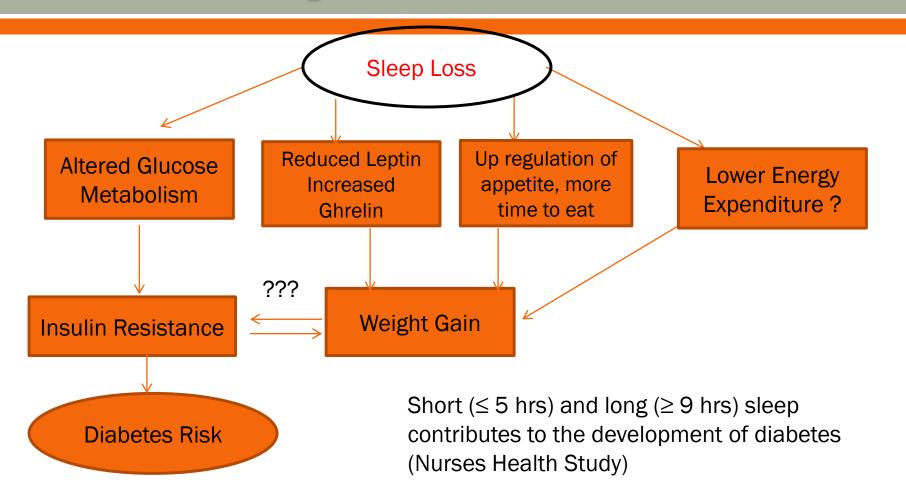
Obesity Trends* Among U.S. Adults


BRFSS, 1990, 2000, 2010

(*BMI ≥30, or about 30 lbs. overweight for 5'4" person)

CHF and Sleep Problems

- Dyspnea
- Symptoms of RLS
- SA/CSA SA/CSA
- Insomnia
 - Impacts daytime functional performance
- Short sleep duration

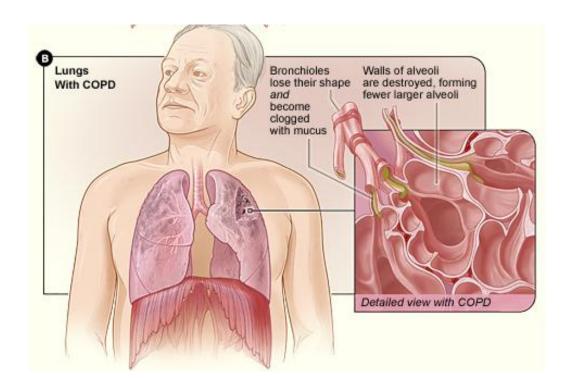


CHF Common Medications

Drugs

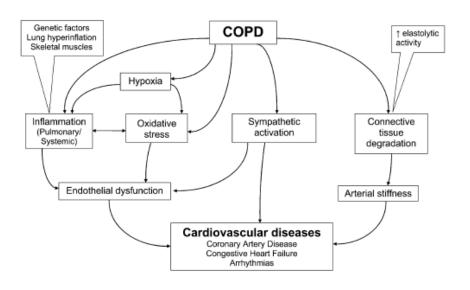
- Diuretics
 - Nocturia; leg cramps
- Beta Blockers
 - Insomnia, nighttime awakenings
- Antiarrhythmic
 - Sleep difficulties, daytime fatigue
- Ace Inhibitors
 - Fatigue, sleep problems

Sleep Loss Diabetes


How does diabetes contribute to poor sleep?

- Anxiety
- **50** Depression
- Painful neuropathy
- Going to the bathroom
- Restless Legs

Chronic Obstructive Pulmonary Disease


- Emphysema
- Chronic Bronchitis

COPD

- Disrupted and fragmented sleep
 - Prolonged sleep latency; decreased efficiency; TST;REM and SWS.
 - Coughing and shortness of breath

SA Overlap

Asthma

- 50 7.1 million: Number of children who have asthma
- 9.5%: Percent of children who currently have asthma
- 18.5 million: Number of non-institutionalized adults with asthma
- 14.2 million: Number of visits to physician offices with asthma as the primary diagnosis
- 1.8 million: Number of visits to the ED with asthma as the primary diagnosis

Asthma and Sleep

- Disrupted and fragmented sleep
 - Dyspnea, cough or wheeze
- Lowest peak flow during night hours(4 AM)
 - Increased parasympathetic activity; increased airway inflammation, increased levels of proinflammatory leukotriens
- Treatment with inhaled corticosteriods may help to improve sleep: Depends on time of day

Take Away-Bi-directionality

- Sleep disturbances may contribute to the development of co-morbid conditions
- Medical conditions can contribute to poor sleep
- Care of patients with chronic conditions must always include adequate investigation of sleep related issues

Adults Reporting Selected Sleep Behaviors in 12 States by Characteristics Behavioral Risk Factor Surveillance System, United States, 2009

Age (years)	Unintentionally fell asleep during day at least once in the past month	Nodded off or fell asleep while driving in the past month
18 to <25	43.7%	4.5%
25 to <35	36.1%	7.2%
35 to <45	34.0%	5.7%
45 to <55	35.3%	3.9%
55 to <65	36.5%	3.1%
≥65	44.6%	2.0%
Race/Ethnicity		
White non-Hispanic	33.4%	3.2%
Black non-Hispanic	52.4%	6.5%
Hispanic	41.9%	6.3%
Other non-Hispanic	41.0%	7.2%
Sex		
Male	38.4%	5.8%
Female	37.3%	3.5%

Consequences of Sleep Deprivation

Sleep and the Work Place

- Sleep viewed as "private activity"
- Expectation that the worker come to work with optimum mental and physical capacity
- Extreme tiredness is associated with sleep duration prior to shift, shift length, night shift and workload

Sleep Deprivation Facts

- Subjective sleep may be stated as higher compared to objective measures
- OSA associated with CVD, cognitive impairment, increased risk of motor vehicle accidents
- Insomnia associated with depression, hypertension, daytime functional impairments (increased absenteeism, decreased productivity
- Shift Work Disorder contributes to CVD, digestive troubles, cancer, depression

Rogers, A (2008) In Hughes RG (ed.). Patient safety and quality: An evidence-based handbook for nurses. (Prepared with support from the Robert Wood Johnson Foundation). AHRQ Publication No. 08-0043. Rockville, MD: Agency for Healthcare Research and Quality; March 2008.

The Importance of Adequate Sleep in the Workplace

- "According to 2004 data from the Bureau of Labor Statistics, almost 15 million Americans work full time on evening shift, night shift, rotating shifts, or other employer arranged irregular schedules" CDC (2013)
- Types of Shift Work
 - Outside of "normal" work shift hours i.e. 7AM to 6 PM
 - Overtime work (beyond 40 hrs)
 - Extended Shifts (i.e. longer than 8 hours) (Lerman et al., 2012, ACOEM Guidance Statement)

Performance Benefits of Adequate Sleep

- Improved Productivity
- Improved Learning
- Enhanced Memory
- Improved Judgment
- Enhanced Mood
- Improved Attention and Reaction Times
- Decreased Likelihood of Motor Vehicle Accidents
- Decreased Safety Risks

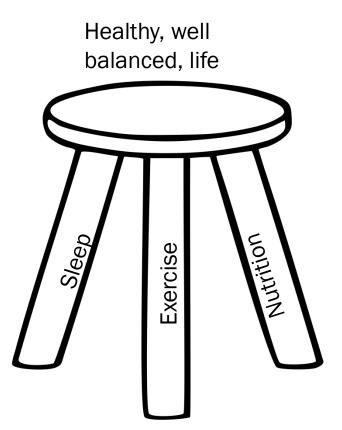
Sleep Critical Occupations

- Pilots
- Truck Drivers
- Nurses
- Physicians
- Air Traffic Controllers
- Sleep Technologists
- **SOLUTION** EMS
- **50** Other?

Practice Implications

- Question patients regarding their normal working environment
- Provide suggestions to improve sleep in general
 - If shift worker, provide information specifically related to shift work disorder if appropriate
- Consider the under-reporting of sleepiness and the impact to public and personal safety

Creating Sleep Value


- Promote Sleep Health: An Always event!
- Participate in health fairs
- Create community partnerships
- Align with local corporations HR department
 - Write an article regarding sleep and sleep deprivation
 - Include productivity statistics
 - Provide insight to improvement
 - Offer lunch and learns
 - Demonstration projects
 - Outcome measures
- Employee Assistance Programs
 - Conduct lunch and learns
 - Educate EAP Executives on the importance of Sleep

NEJM 2007

This book, coming on the heels of official recognition of sleep medicine by the American Board of Medical Specialties and the Accreditation Council for Graduate Medical Education, is a boon to the field. It will be of great interest to anyone interested in sleep medicine and should-be-mandatory reading for governmental and academic health-center policymakers. The Institute of Medicine, the

Summary

One leg too long, short or broken......

Summary

- 50 The field of Somnology is steeped in research and history
- Sleep Health impacts individuals, public health and safety
- Integration of Somnology and Sleep Health is crucial in all areas of medicine
- Contact and participate in your community
 - HR Departments
 - Industry
 - Lunch and Learns
 - o EAP
 - Focus on productivity and loss of work time

